
Ballet: A lightweight framework for
open-source, collaborative feature engineering

Micah J. Smith, Kelvin Lu, and Kalyan Veeramachaneni
Massachusetts Institute of Technology

Introduction and Motivation

Open data science projects consist of community-driven, open-source analysis of data and
development of predictive models to address societal problems.

Motivation In the Frag-
ile Families Challenge [1],
which tasked participants
with predicting GPA, Grit,
Material hardship,
Eviction, Layoff, and
Job training, feature
engineering was the main
competition bottleneck. Figure 1: The Fragile Families Challenge dataset

I Development of such models must support synchronous collaboration by hundreds of
interested contributors

I Need a framework to support splitting data science tasks and combining individual
components of source code

I Feature engineering, an important task in practical machine learning, is susceptible this
strategy.

I Goals: Accelerate development, improve quality of features, facilitate collaborative
contributions, maintain pipeline integrity, avoid “heavy” infrastructure

Ballet is a lightweight software framework for collaborative, open-source data
science through a focus on feature engineering.

⇒ https://github.com/HDI-Project/ballet

The Ballet framework

I Challenge 1: Facilitate incremental patches→ maintain feature engineering pipeline
invariant through extensive software validation and streaming logical feature selection

I Challenge 2: Can’t rely on any custom infrastructure (open-source world)→ design for
lightweight architecture

Initialize Ballet generates a new GitHub repository from a template which contains an
empty feature engineering pipeline.

Develop How do contributors grow the pipeline?

Develop features
 clone project
 write feature

Feature validation

1

CI

ballet-project
.../features/contrib/

create
pull request

want to
improve model

trigger build

prune features

trigger
build

update
badge

accepted?tri
gg

er
 bu

ild merge

Feature pruning bot
 build X
 feature pruning evaluation

Continuous metrics bot
 build X
 compute accuracy,
 MSE, compactness

project structure check
feature API check
feature acceptance evaluation

Maintainer

2 3

4

5

Figure 2: The feature development lifecycle

� �
import ballet.eng

input = ['Full Bath ', 'Half Bath ',
'Bsmt Full Bath ', 'Bsmt Half Bath ']

def count_baths(df):

return df['Full Bath '] + 0.5 * df['Half Bath '] + \

df['Bsmt Full Bath '] + 0.5 * df['Bsmt Half Bath ']
transformer = ballet.eng.SimpleFunctionTransformer(func=count_baths)

feature = Feature(input=input ,

transformer=transformer ,

name='Bathroom Count ')� �
Figure 3: A Ballet feature from the Ames problem

Model The resulting feature engineering pipeline is used as a dependency to an AutoML
solution or a custom ML model (not the focus of this work).

Logical feature selection

A logical feature is a function that maps raw variables in one data instance to a vector of
feature values,

fDj : Vp→ Rqj,
where qj is the dimensionality of the feature vector.

⇒ Can have qj > 0, such as with one-hot encodings, embeddings, etc.

The logical feature selection problem is to select a subset of feature functions,

F∗ = argmin
F ′∈P(F)

E[L(AF ′)]

Contrast this with the traditional feature selection problem to select a subset of feature
values, X∗ ⊆ X.

Streaming logical feature selection (SLFS): Let Ft be the set of features accepted as of
time t, and let ft+1 be proposed at time t+ 1.

I Acceptance problem: accept ft+1, setting Ft+1 = Ft ∪ ft+1, or reject, setting
Ft+1 = Ft.

I Pruning problem: remove a subset S ⊆ Ft+1 of low-quality features, setting
Ft+1 = Ft+1 \ S.

Example Adapt α-investing [2] to the logical feature selection setting:

T = −2(logL(Ft)− logL(F†t))
T ∼ χ2(q)

We can compute a p-value and accept if pt < αt.

Evaluation

Case study: Ames housing price prediction.
I Extract 249 logical features from 9 public notebooks on Kaggle.
I Simulate a scenario in which Kagglers submitted their features to a Ballet project instead.
I Iteratively select random notebook, simulate its submission, and validate using SLFS.

batch streaming0.0

0.2

0.4

0.6

0.8

1.0

co
m

pa
ct

ne
ss

 (%
)

batch streaming0.0

0.2

0.4

0.6

0.8

1.0

R-
sq

ua
re

d

1 2 3 4 5 6 7 8 9
notebook

0

5

10

15

20

25

30

nu
m

be
r o

f f
ea

tu
re

s

accepted
rejected

Figure 4: Performance of streaming and batch feature selection on Ames notebook features in
terms of compactness (percentage of logical features selected by algorithm, left) and R2

(center); mean accepted and rejected features per data scientist using SLFS (right).

Takeaways: 72.4% of all features are rejected by the feature validation and SLFS algorithm,
suggesting substantial work was redundant across notebooks. Every notebook had both
accepted and rejected features, suggesting both that everyone had something to contribute to
final pipeline but that everyone did redundant work.

Conclusion and future work

We describe the design and implementation of the Ballet framework and demonstrate its use
through a case study on real-world data.

As we continue to develop Ballet, in further research, we hope to assess impacts on developer
efficiency through user studies, deploy it in large-scale collaborations (are you interested?),
and investigate more sophisticated SLFS algorithms.

References

[1] A. Kindel, V. Bansal, K. Catena, T. Hartshorne, K. Jaeger, D. Koffman, S. McLanahan, M. Phillips, S. Rouhani, R. Vinh, and et al.

Improving metadata infrastructure for complex surveys: Insights from the fragile families challenge, Sep 2018.

[2] J. Zhou, D. Foster, R. Stine, and L. Ungar.

Streaming feature selection using alpha-investing.

Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining - KDD ’05, page 384, 2005.

https://dai.lids.mit.edu {micahs,kelvinlu,kalyanv}@mit.edu

https://github.com/HDI-Project/ballet

